Extensions 1→N→G→Q→1 with N=C6 and Q=C22xC10

Direct product G=NxQ with N=C6 and Q=C22xC10
dρLabelID
C23xC30240C2^3xC30240,208

Semidirect products G=N:Q with N=C6 and Q=C22xC10
extensionφ:Q→Aut NdρLabelID
C6:(C22xC10) = S3xC22xC10φ: C22xC10/C2xC10C2 ⊆ Aut C6120C6:(C2^2xC10)240,206

Non-split extensions G=N.Q with N=C6 and Q=C22xC10
extensionφ:Q→Aut NdρLabelID
C6.1(C22xC10) = C10xDic6φ: C22xC10/C2xC10C2 ⊆ Aut C6240C6.1(C2^2xC10)240,165
C6.2(C22xC10) = S3xC2xC20φ: C22xC10/C2xC10C2 ⊆ Aut C6120C6.2(C2^2xC10)240,166
C6.3(C22xC10) = C10xD12φ: C22xC10/C2xC10C2 ⊆ Aut C6120C6.3(C2^2xC10)240,167
C6.4(C22xC10) = C5xC4oD12φ: C22xC10/C2xC10C2 ⊆ Aut C61202C6.4(C2^2xC10)240,168
C6.5(C22xC10) = C5xS3xD4φ: C22xC10/C2xC10C2 ⊆ Aut C6604C6.5(C2^2xC10)240,169
C6.6(C22xC10) = C5xD4:2S3φ: C22xC10/C2xC10C2 ⊆ Aut C61204C6.6(C2^2xC10)240,170
C6.7(C22xC10) = C5xS3xQ8φ: C22xC10/C2xC10C2 ⊆ Aut C61204C6.7(C2^2xC10)240,171
C6.8(C22xC10) = C5xQ8:3S3φ: C22xC10/C2xC10C2 ⊆ Aut C61204C6.8(C2^2xC10)240,172
C6.9(C22xC10) = Dic3xC2xC10φ: C22xC10/C2xC10C2 ⊆ Aut C6240C6.9(C2^2xC10)240,173
C6.10(C22xC10) = C10xC3:D4φ: C22xC10/C2xC10C2 ⊆ Aut C6120C6.10(C2^2xC10)240,174
C6.11(C22xC10) = D4xC30central extension (φ=1)120C6.11(C2^2xC10)240,186
C6.12(C22xC10) = Q8xC30central extension (φ=1)240C6.12(C2^2xC10)240,187
C6.13(C22xC10) = C15xC4oD4central extension (φ=1)1202C6.13(C2^2xC10)240,188

׿
x
:
Z
F
o
wr
Q
<